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SUMMARY

Central-peripheral temperature gradients are calculated for circular section
columns of uniform bore, filled with electrolyte, and carrying current, in the steady
state. Wall thickness and material are allowed for. Cases of electrolytes or fillings
having zero, positive, and negative temperature coefficients of resistivity are calcu-
lated, correction being made for non-uniform current density, using Bessel functions,
For negative coefficients, the results differ substantially from simple parabolic theory,
gradients being progressively higher than the latter at high heat dissipations.

INTRODUCTION

Central-peripheral temperature gradients have been calculated previously, as-
suming a zero temperature coefficient of resistivity, or uniform density of current
through the lumen section. In this paper these gradients are recalculated without
these simplifying assumptions, giving substantially different results, in which, for
negative coeflicients, gradients are progressively larger for higher power dissipations
than simple parabolic theory indicates. This is particularly so for increased wall thick-
ness. Similar calculations for rectangular section columns are dealt with in an accom-
panying paper!. A discussion of the anticipated effects of these gradients in electro-
phoresis, and a comparison of results of digitally computed gradients, in the context
of factors determining ideal column shapes and thermal properties is given in a
preceding paper2. A further paper® describes programming and digital computation
of the gradients calculated here and in ref. I. The results of this work were briefly

* To whom reprint requests should be addressed. Present address: Clinical Immunology Depart-
ment, University of Arizona Medical Center, Tucson, Ariz, 85724, U.S.A. ‘



ELECTROPHORETIC TEMPERATURE GRADIENTS. II. 219

reported at a symposium in 1971, by the second author?®, at whose instigation this
project was undertaken.

This treatment of radial temperature gradients was undertaken in order to
determine the thermal limitations of columns in transphoretics and isotachophoretic®:?
displacement® electrophoretic methods, both for analytical®!° and preparative applica-
tions. A second purpose was to lay a basis for calculation of hybrid radial and
longitudinal temperature gradients® in the steady and unsteady states, and thus of the
three-dimensional ionic interface bow in these methods, using current-line and field
distortion stabilization theory!!. These calculations have subsequently been extended
to unsteady states by the second author’s former colleagues?®, for the same purposes,
under a NASA contract to investigate the displacement method for the preparative
separation of cells in zero gravity, the subject of a recent experiment in Skylab'2. A
previous paper deals with the general application of these gradients to electrophoresis?.

THEORY

For an electrolyte of zero temperature coefficient of resistivity?

Consider a circular section column filled with electrolyte. Assume it to be long
enough to neglect end effects in a medial region. Assume heat to be uniformly gener-
ated in the electrolyte, and that there is no convective or other fluid movement. Assume
a zero temperature coefficient of thermal conductivity and of resistivity. Assume the
column exterior to be perfectly cooled and thermostatted, and that the system has

reached a steady state. Using the listed symbols, which refer to the column section
normal to the long axis,

1 d d W,
__‘(”E%)J” k,o =0

r dr
for which the general solution is

_ ) Wy r?
1= A + Biny _4-k1—
where 4 and B are integration constants, whence
_ Wo R
T, = A — —ak, (nH

which gives the temperature at any point in the column, the equation being a parabola.
For the tube wall,
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and

Wo R: W, R: In(ﬁl—)

ik, T Tk, R,

Substituting in eqn. 1 above,

W, t R} — R: R
r=T -+ > 22/:,' "F"E:"'"(W;‘)]

For positive temperature coefficients?

d?s 1 dr Wy
ET"FTET—— %, (1 +ar)
Let
M Z
then
d?s 1 dr 2. Wo
FLARr T >
the general solution of which is
— . ——— . — _Wo
t=AJo(fr)+ BYa(fr) 5k,
But
W,
2 [}]
ﬁ =a kl
SO
= AJ B+ BYo(fr) — —
where r =0, Yy = —oo and J; = |, so
t=AJy(fr)— !
= o —
When r = R,
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Substituting in eqn. 4 above

. 1w R,
Ado (B R) — o= T+ 5 ——1n (R
therefore
. 1 1, W, Ry
A= gamEy Dt Tt e (R)]
Substituting in eqn. 4 for 4
. Jo (f}l') | L_ W, R] _ 1
"= 3. (ARy) 1+ 7+ 2k, '"(7?2“)] o ()

For negative temperature coefficients?
This is the usual case for electrolytes in aqueous solution. Similarly to eqn. 5
above

_ _do(yr) LW Rivy 1 :
r= lo (¥Ry) [T’ Py ks, ‘n(Rz)] a (6)
where
W,
2= 0
’ @ kl

The rvelationship of W, and W,

Consider an annulus in the lumen section of radius », of thickness d» and at
a temperature of ¢ °C.

R

2
W, =2n W, f (1 4-an)yrdr
0
Substituting for ¢, from eqn. 4 above
R2
W, =2rma Wy A f Jo (B r)rdr
0

Let Sr = y and 8R; = Y, then

2 Wed ¥
W, = _n__a_ﬂ_z_o_of » A (y) dy
But
ddo (MY _ _ ¥ ,
PREAC R VYR
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Therefore
-2 Wo AR, Jy R
W, = T A oﬁzo(ﬁ 2) (7
When r = R,

e W R,
t=T=T + 27k, ln(Rz)

Substituting in eqn. 4

I 1w R
A=) 1+ 5+ Sk, M (T;)]

Substituting in eqn. 7

_ =2maWo R,  Jo' (BRy) L | W, _I_{’l_
We= B = "7, (AR [T+ 5+ Sk, 0 (Rz)]
But

Jo' (x) = —Jy (x)
So for positive a
2rn a Wo R2 sz] (ﬁ Rz)

B kado (B R — a Wo Ryln (22) 41 (8 Ry

W, =

(Tl + %) (8)

’ 1
(TL + —) ©)
o
Current density correction

The foregoing theory is valid only for uniform current density. But current

density cannot be be uniform for temperature coefficients other than zero. To correct
for this, modify eqn. 3

and for negative a

W — ' 2na Wy Ry key I (¥ Ry)

t Rl
ykzlo (? Rz) — Wo Rzln —_— ]1 ('y Rz)

R,

d: 1 dr W 1
dr? r dr ki 1-+ at

But this is only numerically soluble. To render this more easily soluble, let

then
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the solution of which has been derived for positive and negative values of a and thus
for u, in eqns. 5, 6, 8 and 9. For positive a and negative ¢

b 1r ___'_- Ri W, Riyp

r= I,,(sz)[ i Y (Rz)] w (10
and

Wt —_ 27!'/1 W()Rzlfz ,| (}) ﬁz) Tl - _;lt_ (l])

vkaly(y R) — i Wo Ry In (B5) 1y (v Ra)

and for negative « and positive u

—_JoBr) 1 RIW, Riyvy_

(=Gwry Nt S (@] - (12
and

W, = 2a pu Wo Ry kyJy (8 R,) T, -+ _’_ (13)

ﬁszo(ﬁkz)——,uWoRzln(R)J,(ﬁR) #

Calculation of 1t

In practice (1 -- at) is an approximation of a series (1 - ar -+ 1?). Plotting
the reciprocal of the latter against 7, an approximately straight line is obtained, of
gradient & = 0.033, using values for 0.1 mM KCI', This value was therefore used in
digital computation®. Above 34°, for T, of 4°, the relation is less linear and therefore
less reliable.

CONCLUSIONS

Comparison of equations for zero and negative temperature coefficients of
resistivity, where current density changes have to be allowed for in the latter case,
shows that for electrolyte solutions the temperature gradient in the steady state is not
parabolic. It departs from the parabolic shape increasingly with higher real dissipated
power per unit length of column, central temperatures likewise becoming increasingly
greater than for zero coefficients. For positive coefficients, the gradients are more
favourable. For electrolytes, Joule heating problems are therefore increasingly more
severe than simple theory suggests. The general application to electrophoresis is dealt
with in a previous paper of the series32.

SYMBOLS AND UNITS

r radius of tube section

R, = external radius of tube, cm
R, = internal radius of tube, cm
k, = thermal conductivity of electrolyte, cal-sec™!'-cm~!.-°C~!



224 J. F. BROWN, J. O, N. HINCKLEY

k, = thermal conductivity of tube material, cal-sec™'-cm~!'-°C~!
t = temperature
7, = temperature at wall exterior, °C

T, = temperature at lumen periphery. °C
T, = temperature at lumen section centre, °C
W, = nominal power dissipation at 7. assuming a zero value of a, cal'cm™?
W, = actual power dissipation per unit length of column, cal-cm~!
Jo = Bessel function of zero order and first kind ‘
J, = Bessel function of first order and first kind
I, = Bessel function of zero order and modified first kind
I, = Bessel function of first order and modified first kind
Yo = Bessel function of zero order and second kind
« = temperature coeflicient of resistivity of electrolyte, °C~!
[s) WQ

/j - V I(']

- (¢ Wo
) == —— ————
? l/ I,
4 = a function of a
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